#include #include #include #include #include "ggml-cuda.h" typedef uint16_t ggml_fp16_t; static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size"); #define QK4_0 32 typedef struct { float d; // delta uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); #define QK4_1 32 typedef struct { float d; // delta float m; // min uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); #define QK4_2 16 typedef struct { __half d; // delta uint8_t qs[QK4_2 / 2]; // nibbles / quants } block_q4_2; static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); #define QK5_0 32 typedef struct { __half d; // delta uint8_t qh[4]; // 5-th bit of quants uint8_t qs[QK5_0 / 2]; // nibbles / quants } block_q5_0; static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); #define QK5_1 32 typedef struct { __half d; // delta __half m; // min uint32_t qh; // 5-th bit of quants uint8_t qs[QK5_1 / 2]; // nibbles / quants } block_q5_1; static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); #define QK8_0 32 typedef struct { float d; // delta int8_t qs[QK8_0]; // quants } block_q8_0; static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); static __global__ void dequantize_block_q4_0(const void * vx, float * y) { const block_q4_0 * x = (const block_q4_0 *) vx; const int i = blockIdx.x; const float d = x[i].d; const uint8_t * pp = x[i].qs; for (int l = 0; l < QK4_0; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0xf; const int8_t vi1 = vi >> 4; const float v0 = (vi0 - 8)*d; const float v1 = (vi1 - 8)*d; y[i*QK4_0 + l + 0] = v0; y[i*QK4_0 + l + 1] = v1; } } static __global__ void dequantize_block_q4_1(const void * vx, float * y) { const block_q4_1 * x = (const block_q4_1 *) vx; const int i = blockIdx.x; const float d = x[i].d; const float m = x[i].m; const uint8_t * pp = x[i].qs; for (int l = 0; l < QK4_1; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0xf; const int8_t vi1 = vi >> 4; const float v0 = vi0*d + m; const float v1 = vi1*d + m; y[i*QK4_1 + l + 0] = v0; y[i*QK4_1 + l + 1] = v1; } } static __global__ void dequantize_block_q4_2(const void * vx, float * y) { const block_q4_2 * x = (const block_q4_2 *) vx; const int i = blockIdx.x; const float d = x[i].d; const uint8_t * pp = x[i].qs; for (int l = 0; l < QK4_2; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0xf; const int8_t vi1 = vi >> 4; const float v0 = (vi0 - 8)*d; const float v1 = (vi1 - 8)*d; y[i*QK4_2 + l + 0] = v0; y[i*QK4_2 + l + 1] = v1; } } static __global__ void dequantize_block_q5_0(const void * vx, float * y) { const block_q5_0 * x = (const block_q5_0 *) vx; const int i = blockIdx.x; const float d = x[i].d; const uint8_t * pp = x[i].qs; uint32_t qh; memcpy(&qh, x[i].qh, sizeof(qh)); for (int l = 0; l < QK5_0; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; const int8_t vi0 = ((vi & 0xf) | vh0); const int8_t vi1 = ((vi >> 4) | vh1); const float v0 = (vi0 - 16)*d; const float v1 = (vi1 - 16)*d; y[i*QK5_0 + l + 0] = v0; y[i*QK5_0 + l + 1] = v1; } } static __global__ void dequantize_block_q5_1(const void * vx, float * y) { const block_q5_1 * x = (const block_q5_1 *) vx; const int i = blockIdx.x; const float d = x[i].d; const float m = x[i].m; const uint8_t * pp = x[i].qs; const uint32_t qh = x[i].qh; for (int l = 0; l < QK5_1; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4; const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4; const int8_t vi0 = (vi & 0xf) | vh0; const int8_t vi1 = (vi >> 4) | vh1; const float v0 = vi0*d + m; const float v1 = vi1*d + m; y[i*QK5_1 + l + 0] = v0; y[i*QK5_1 + l + 1] = v1; } } static __global__ void dequantize_block_q8_0(const void * vx, float * y) { const block_q8_0 * x = (const block_q8_0 *) vx; const int i = blockIdx.x; const float d = x[i].d; const int8_t * pp = x[i].qs; for (int l = 0; l < QK8_0; l++) { const int8_t vi = pp[l]; y[i*QK8_0 + l] = vi*d; } } void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_0; dequantize_block_q4_0<<>>(vx, y); } void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_1; dequantize_block_q4_1<<>>(vx, y); } void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_2; dequantize_block_q4_2<<>>(vx, y); } void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK5_0; dequantize_block_q5_0<<>>(vx, y); } void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK5_1; dequantize_block_q5_1<<>>(vx, y); } void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK8_0; dequantize_block_q8_0<<>>(vx, y); } dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return dequantize_row_q4_0_cuda; case GGML_TYPE_Q4_1: return dequantize_row_q4_1_cuda; case GGML_TYPE_Q4_2: return dequantize_row_q4_2_cuda; case GGML_TYPE_Q5_0: return dequantize_row_q5_0_cuda; case GGML_TYPE_Q5_1: return dequantize_row_q5_1_cuda; case GGML_TYPE_Q8_0: return dequantize_row_q8_0_cuda; default: return nullptr; } } // buffer pool for cuda #define MAX_CUDA_BUFFERS 16 struct scoped_spin_lock { std::atomic_flag& lock; scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { while (lock.test_and_set(std::memory_order_acquire)) { ; // spin } } ~scoped_spin_lock() { lock.clear(std::memory_order_release); } scoped_spin_lock(const scoped_spin_lock&) = delete; scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; }; struct cuda_buffer { void * ptr = nullptr; size_t size = 0; }; static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { cuda_buffer& b = g_cuda_buffer_pool[i]; if (b.size >= size && b.ptr != nullptr) { void * ptr = b.ptr; *actual_size = b.size; b.ptr = nullptr; b.size = 0; return ptr; } } void * ptr; CUDA_CHECK(cudaMalloc((void **) &ptr, size)); *actual_size = size; return ptr; } void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { cuda_buffer& b = g_cuda_buffer_pool[i]; if (b.ptr == nullptr) { b.ptr = ptr; b.size = size; return; } } fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); CUDA_CHECK(cudaFree(ptr)); } cublasHandle_t g_cublasH = nullptr; cudaStream_t g_cudaStream = nullptr; cudaStream_t g_cudaStream2 = nullptr; cudaEvent_t g_cudaEvent = nullptr; void ggml_init_cublas() { if (g_cublasH == nullptr) { // create cublas handle, bind a stream CUBLAS_CHECK(cublasCreate(&g_cublasH)); CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking)); CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream)); // create additional stream and event for synchronization CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking)); CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming)); // configure logging to stdout // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL)); } } cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { const uint64_t ne0 = src->ne[0]; const uint64_t ne1 = src->ne[1]; const uint64_t nb0 = src->nb[0]; const uint64_t nb1 = src->nb[1]; const uint64_t nb2 = src->nb[2]; const uint64_t nb3 = src->nb[3]; const enum ggml_type type = src->type; const size_t ts = ggml_type_size(type); const size_t bs = ggml_blck_size(type); const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); if (nb0 == ts && nb1 == ts*ne0/bs) { return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream); } else if (nb0 == ts) { return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream); } else { for (uint64_t i1 = 0; i1 < ne1; i1++) { const void * rx = (const void *) ((const char *) x + i1*nb1); void * rd = (void *) ((char *) dst + i1*ts*ne0/bs); // pretend the row is a matrix with cols=1 cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); if (r != cudaSuccess) return r; } return cudaSuccess; } } void * ggml_cuda_host_malloc(size_t size) { if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { return nullptr; } void * ptr = nullptr; cudaError_t err = cudaMallocHost((void **) &ptr, size); if (err != cudaSuccess) { fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", size/1024.0/1024.0, cudaGetErrorString(err)); return nullptr; } return ptr; } void ggml_cuda_host_free(void * ptr) { CUDA_CHECK(cudaFreeHost(ptr)); }